A Critical Review on Battery Aging and State Estimation Technologies of Lithium-Ion Batteries: Prospects and Issues

Author:

Roy Probir Kumar1,Shahjalal Mohammad2,Shams Tamanna3,Fly Ashley4ORCID,Stoyanov Stoyan2ORCID,Ahsan Mominul5ORCID,Haider Julfikar6ORCID

Affiliation:

1. Department of Electronics and Electrical Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh

2. Old Royal Naval College, University of Greenwich, Park Row, London SE10 9LS, UK

3. Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh

4. Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough LE11 3TU, UK

5. Department of Computer Science, University of York, Deramore Lane, York YO10 5GH, UK

6. Department of Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK

Abstract

Electric vehicles (EVs) have had a meteoric rise in acceptance in recent decades due to mounting worries about greenhouse gas emissions, global warming, and the depletion of fossil resource supplies because of their superior efficiency and performance. EVs have now gained widespread acceptance in the automobile industry as the most viable alternative for decreasing CO2 production. The battery is an integral ingredient of electric vehicles, and the battery management system (BMS) acts as a bridge between them. The goal of this work is to give a brief review of certain key BMS technologies, including state estimation, aging characterization methodologies, and the aging process. The consequences of battery aging limit its capacity and arise whether the battery is used or not, which is a significant downside in real-world operation. That is why this paper presents a wide range of recent research on Li-ion battery aging processes, including estimations from multiple areas. Afterward, various battery state indicators are thoroughly explained. This work will assist in defining new relevant domains and constructing commercial models and play a critical role in future research in this expanding area by providing a clear picture of the present status of estimating techniques of the major state indicators of Li-ion batteries.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3