Economic Dispatch of Integrated Electricity–Heat–Hydrogen System Considering Hydrogen Production by Water Electrolysis

Author:

Wang Jinhao1,Pan Zhaoguang2,Ge Huaichang2,Zhao Haotian2,Xia Tian2,Wang Bin2

Affiliation:

1. Electric Power Research Institute of State Grid Shanxi Electric Power Company, Taiyuan 030024, China

2. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Water electrolysis is a clean, non-polluting way of producing hydrogen that has seen rapid development in recent years. It offers the possibility of resolving the issue of excessive carbon emissions in conventional hydrogen production methods. In addition, waste heat recovery in hydrogen fuel cells can significantly increase the efficiency of energy use. Thus, to combine the electric power system, the hydrogen energy system, and the district heating system, this research suggests a novel optimal multi-energy complementary electricity–hydrogen–heat model. Rooftop photovoltaics, energy storage batteries, electric boilers, and hydrogen energy systems made up of hydrogen generation, hydrogen storage, and hydrogen fuel cells are all included in the suggested model. Furthermore, the electricity–hydrogen–heat system can be connected successfully using waste heat recovery in hydrogen fuel cells to create a coordinated supply of heat and power. In this work, the waste heat of hydrogen fuel cells is taken into account to increase the efficiency of energy use. To show the effectiveness of the suggested optimal multi-energy complementary model, many case studies have been conducted.

Funder

State grid Shanxi Electric power company technology project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3