Evaluation of Hydrogen Generation with Hybrid Renewable Energy Sources

Author:

Ramadan A.1,Gabbar Hossam A.1ORCID

Affiliation:

1. Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON L1G 0C5, Canada

Abstract

Generating hydrogen by electrolysis in an alkaline system with a green power source consisting of wind turbines (WTs) and photovoltaic (PV) power is a promising and sustainable way to produce clean hydrogen to reduce greenhouse gas emissions. This study utilized TRNSYS 16 software to perform a dynamic simulation of a hydrogen system. TRNSYS, which stands for Transient System Simulation Program, is a software package designed for simulating the dynamic behaviour of thermal and electrical energy systems. It is widely used to analyze and optimize the performance of various energy systems. This system incorporated a PV power source and a WT for electricity generation, along with an electrolyzer for hydrogen production. The analysis was carried out to evaluate variable weather conditions, specifically wind speed, solar radiation, and temperature. These factors have a direct impact on the system’s performance, influencing the available power as a consequential outcome. The results reveal that, given the specific climate conditions in the Markham zone, Toronto, the integrated renewable system is capable of consistently providing electricity and meeting the load demand throughout the entire year. However, it is noteworthy that on cold days when solar radiation is limited, the WT emerges as the most effective and efficient power source. The analysis also indicates that the system reliably supplies enough energy to meet the laboratory’s load demand. Moreover, the system’s performance is particularly impressive with the WT as the power source, as it can generate a maximum of 9.03 kg of hydrogen per month. In contrast, the PV power source yields only 0.58 kg H2. Additionally, the cost per kilogram of hydrogen (kg H2) is considerably lower when the WT is used, at USD 0.55/kg H2, while it rises to USD 1.5/kg H2 when PV is the power source. These findings underscore the significance of using the most suitable power source, such as a WT, in specific climatic conditions and regions in terms of both performance and cost-effectiveness.

Funder

Government of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3