Optimization Algorithm for Steel Surface Defect Detection Based on PP-YOLOE

Author:

Qu Yi1,Wan Boyu1,Wang Cheng1,Ju Haijuan1,Yu Jiabo1,Kong Yakang1ORCID,Chen Xiancong1

Affiliation:

1. Fundamentals Department, Air Force Engineering University, Xi’an 710051, China

Abstract

The fast and accurate detection of steel surface defects has become an important goal of research in various fields. As one of the most important and effective methods of detecting steel surface defects, the successive generations of YOLO algorithms have been widely used in these areas; however, for the detection of tiny targets, it still encounters difficulties. To solve this problem, the first modified PP-YOLOE algorithm for small targets is proposed. By introducing Coordinate Attention into the Backbone structure, we encode channel relationships and long-range dependencies using accurate positional information. This improves the performance and overall accuracy of small target detection while maintaining the model parameters. Additionally, simplifying the traditional PAN+FPN components into an optimized FPN feature pyramid structure allows the model to skip computationally expensive but less relevant processes for the steel surface defect dataset, effectively reducing the computational complexity of the model. The experimental results show that the overall average accuracy (mAP) of the improved PP-YOLOE algorithm is increased by 4.1%, the detection speed is increased by 2.06 FPS, and the accuracy of smaller targets (with a pixel area less than 322) that are more difficult to detect is significantly improved by 13.3% on average, as compared to the original algorithm. The detection performance is also higher than that of the mainstream target detection algorithms, such as SSD, YOLOv3, YOLOv4, and YOLOv5, and has a high application value in industrial detection.

Funder

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3