DEW-YOLO: An Efficient Algorithm for Steel Surface Defect Detection

Author:

Li Junjie12,Chen Mingxia12

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Automation Technology, Guilin University of Technology, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541006, China

2. Guangxi Engineering Research Center of Intelligent Rubber Equipment, Guilin University of Technology, Guilin 541006, China

Abstract

To address the current steel surface defect detection algorithms in practical applications involving low detection accuracy, an efficient and highly accurate strip steel surface defect detection algorithm, DEW-YOLO, is proposed in this paper. Firstly, by combining the advantages of deformable convolutional networks (DCNs), this paper innovates the C2F module in YOLOv8 and proposes a C2f_DCN module that can flexibly sample features to enhance the abilities of learning and expressing defect features of different sizes and shapes. Secondly, the explicit visual center (EVC) is introduced into the backbone network, which enhances feature extraction capabilities and adaptability and enables the model to better adjust features at different levels and scales. Finally, the original loss function is replaced with the Wise-IoU (WIoU) loss function to accurately measure the similarity between the target frames and improve the defect detection performance of the model. The experimental results on the NEU-DET dataset demonstrate that the algorithms proposed in this paper achieved a mean average precision (mAP) of 80.3% in steel surface defect detection tasks, which was a 3.9% improvement over the original YOLOv8 model. The model’s inference speed reached 91 frames per second (FPS). DEW-YOLO effectively enhances the accuracy of steel defect detection and better satisfies industrial inspection requirements.

Funder

National Natural Science Foundation of China

Guangxi Key R&D Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3