Affiliation:
1. Electronic Engineering Department, Kwangwoon University, Seoul 01897, Republic of Korea
2. Aerospace Information Research Institute, Chinese Academy of Sciences (AIRCAS), Suzhou Campus, Suzhou 215000, China
Abstract
The technology for human activity recognition has diverse applications within the Internet of Things spectrum, including medical sensing, security measures, smart home systems, and more. Predominantly, human activity recognition methods have relied on contact sensors, and some research uses inertial sensors embedded in smartphones or other devices, which present several limitations. Additionally, most research has concentrated on recognizing discrete activities, even though activities in real-life scenarios tend to be continuous. In this paper, we introduce a method to classify continuous human activities, such as walking, running, squatting, standing, and jumping. Our approach hinges on the micro-Doppler (MD) features derived from continuous-wave radar signals. We first process the radar echo signals generated from human activities to produce MD spectrograms. Subsequently, a bidirectional gate recurrent unit (Bi-GRU) network is employed to train and test these extracted features. Preliminary results highlight the efficacy of our approach, with an average recognition accuracy exceeding 90%.
Funder
National Research Foundation of Korea (NRF) grant funded by the Korea Government
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献