Deep Learning–Based Segmentation of Trypanosoma cruzi Nests in Histopathological Images

Author:

Hevia-Montiel Nidiyare1ORCID,Haro Paulina2ORCID,Guillermo-Cordero Leonardo3ORCID,Perez-Gonzalez Jorge1ORCID

Affiliation:

1. Unidad Académica del Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas del Estado de Yucatán, Universidad Nacional Autónoma de México, Km 4.5. Carretera Mérida-Tetiz, Ucú 97357, Yucatan, Mexico

2. Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Mexicali 21386, Baja California, Mexico

3. Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, Km. 15.5. Carretera Mérida-Xmatkuil, Tizapán 97100, Yucatan, Mexico

Abstract

The use of artificial intelligence has shown good performance in the medical imaging area, in particular the deep learning methods based on convolutional neural networks for classification, detection, and/or segmentation tasks. The task addressed in this research work is the segmentation of amastigote nests from histological microphotographs in the study of Trypanosoma cruzi infection (Chagas disease) implementing a U-Net convolutional network architecture. For the nests’ segmentation, a U-Net architecture was trained on histological images of an acute-stage murine experimental model performing a 5-fold cross-validation, while the final tests were carried out with data unseen by the U-Net from three image groups of different experimental models. During the training stage, the obtained results showed an average accuracy of 98.19 ± 0.01, while in the case of the final tests, an average accuracy of 99.9 ± 0.1 was obtained for the control group, as well as 98.8 ± 0.9 and 99.1 ± 0.8 for two infected groups; in all cases, high sensitivity and specificity were observed in the results. We can conclude that the use of a U-Net architecture proves to be a relevant tool in supporting the diagnosis and analysis of histological images for the study of Chagas disease.

Funder

UNAM-PAPIIT Programs

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference39 articles.

1. Advances in Deep Learning-Based Medical Image Analysis;Liu;Health Data Sci.,2021

2. Accurate segmentation of nuclei in pathological images via sparse reconstruction and deep convolutional networks;Pan;Neurocomputing,2017

3. SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations;Pan;Med. Image Anal.,2023

4. Del Toro, O.J. (2017). Quantitative Analysis of Medical Images: Finding Relevant Regions-of-Interest for Medical Decision Support. [Ph.D. Thesis, University of Geneva].

5. del Toro, O.J., Otálora, S., Andersson, M., Eurén, K., Hedlund, M., Rousson, M., Müller, H., and Atzori, M. (2017). Biomedical Texture Analysis, Elsevier.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3