Estimation during Design Phases of Suitable SRAM Cells for PUF Applications Using Separatrix and Mismatch Metrics

Author:

Alheyasat Abdel,Torrens Gabriel,Bota Sebastià A.ORCID,Alorda BartomeuORCID

Abstract

Physically unclonable functions (PUFs) are used as low-cost cryptographic primitives in device authentication and secret key creation. SRAM-PUFs are well-known as entropy sources; nevertheless, due of non-deterministic noise environment during the power-up process, they are subject to low challenge-response repeatability. The dependability of SRAM-PUFs is usually accomplished by combining complex error correcting codes (ECCs) with fuzzy extractor structures resulting in an increase in power consumption, area, cost, and design complexity. In this study, we established effective metrics on the basis of the separatrix concept and cell mismatch to estimate the percentage of cells that, due to the effect of variability, will tend to the same initial state during power-up. The effects of noise and temperature in cell start-up processes were used to validate the proposed metrics. The presented metrics may be applied at the SRAM-PUF design phases to investigate the impact of different design parameters on the percentage of reliable cells for PUF applications.

Funder

IBETEC

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference21 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3