Abstract
Electric motors have been widely used as fundamental elements for driving kinematic chains on mechatronic systems, which are very important components for the proper operation of several industrial applications. Although electric motors are very robust and efficient machines, they are prone to suffer from different faults. One of the most frequent causes of failure is due to a degradation on the bearings. This fault has commonly been diagnosed at advanced stages by means of vibration and current signals. Since low-amplitude fault-related signals are typically obtained, the diagnosis of faults at incipient stages turns out to be a challenging task. In this context, it is desired to develop non-invasive techniques able to diagnose bearing faults at early stages, enabling to achieve adequate maintenance actions. This paper presents a non-invasive gradual wear diagnosis method for bearing outer-race faults. The proposal relies on the application of a linear discriminant analysis (LDA) to statistical and Katz’s fractal dimension features obtained from stray flux signals, and then an automatic classification is performed by means of a feed-forward neural network (FFNN). The results obtained demonstrates the effectiveness of the proposed method, which is validated on a kinematic chain (composed by a 0.746 KW induction motor, a belt and pulleys transmission system and an alternator as a load) under several operation conditions: healthy condition, 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm hole diameter on the bearing outer race, and 60 Hz, 50 Hz, 15 Hz and 5 Hz power supply frequencies
Funder
Spanish ‘Ministerio de Ciencia Innovación y Universidades’ and FEDER program
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献