Methodology for the Detection of Contamination and Gradual Outer Race Faults in Bearings by Fusion of Statistical Vibration–Current Features and SVM Classifier

Author:

Díaz-Saldaña Geovanni12ORCID,Cureño-Osornio Jonathan1,Zamudio-Ramírez Israel12ORCID,Osornio-Ríos Roque A.1ORCID,Dunai Larisa3ORCID,Sava Lilia4,Antonino-Daviu Jose A.2ORCID

Affiliation:

1. Cuerpo Académico Mecatrónica, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus San Juan del Río, Av. Río Moctezuma 249, San Juan del Río 76807, Querétaro, Mexico

2. Instituto Tecnológico de la Energía, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain

3. Department of Graphic Engineering, Universitat Politècnica de València (UPV), Camino de Vera s/n, 46022 Valencia, Spain

4. Faculty of Electronics and Telecomunications, Technical University of Moldova (UTM), MD-2004 Chisinau, Moldova

Abstract

Bearings are one of the main components of induction motors, machines widely employed in today’s industries, making their monitoring a primordial task; however, most systems focus on measuring one physical magnitude to detect one kind of fault at a time. This research tackles the combination of two common faults, grease contamination and outer race damage, as lubricant contamination significantly impacts the life of the bearing and the emergence of other defects; as a contribution, this paper proposes a methodology for the diagnosis of this combination of faults based on a proprietary data acquisition system measuring vibration and current signals, from which time domain statistical and fractal features are computed and then fused using LDA for dimensionality reduction, ending with an SVM model for classification, achieving 97.1% accuracy, correctly diagnosing the combination of the contamination with different severities of the outer race damage, improving the classification results achieved when using vibration and current signals individually by 7.8% and 27.2%, respectively.

Funder

Spanish ‘Ministerio de Ciencia e Innovación’

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3