Author:
Huang Ledeng,Wang Ruishi,Yang Zhenhua,Xie Longhan
Abstract
In recent years, there has been an increasing demand for portable power sources as people are required to carry more equipment for occupational, military, or recreational purposes. The energy harvesting backpack that moves relative to the human body, could capture kinetic energy from human walking and convert vertical oscillation into the rotational motion of the generators to generate electricity. In our previous work, a light-weight tube-like energy harvester (TL harvester) and a traditional frequency-tuneable backpack-based energy harvester (FT harvester) were proposed. In this paper, we discuss the power generation performance of the two types of energy harvesters and the energy performance of human loaded walking, while carrying energy harvesting backpacks, based on two different spring-mass-damper models. Testing revealed that the electrical power in the experiments showed similar trends to the simulation results, but the calculated electrical power and the net metabolic power were higher than that of the experiments. Moreover, the total cost of harvesting (TCOH), defined as additional metabolic power in watt required to generate 1 W of electrical power, could be negative, which indicated that there is a chance to generate 6.11 W of electricity without increasing the metabolic cost while carrying energy harvesting backpacks.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献