Collecting the energy generated by manual workers to monitor their working status and improve their working conditions by using a flexible rack mechanism

Author:

Ren LiminORCID,Zhou Yang,He Yutong,Li Shixun,Sun Xuewen,Fan Liwu,Tan YisongORCID

Abstract

Abstract Currently, an increasing quantity of portable energy harvesting modules are being developed to capture the energy generated by human motion. However, the size and weight of a device can affect the smoothness and comfort of a user’s normal limb movements in the process of collecting energy generated by human movement. Especially on manual workers, this effect will significantly increase their physical exertion, so the design of energy-harvesting devices for wearing on manual workers has higher requirements. The bend knee energy harvester (BKEH) designed in the work presented in this paper used a laboratory-made flexible rack to harvest the energy generated by manual workers’ frequently bent knees during work. It converts the collected energy into electricity for various wearable devices to monitor the working status of manual workers and improve their working conditions. One end of the flexible rack is fixed to the upper thigh. When the user bends the knee, the flexible rack will move downward, causing the gear to rotate, thereby collecting the energy generated by the body’s movement. The BKEH was made of many lightweight materials and weighed only 406 g, greatly reducing the impact on the user’s normal limb movements and physical exertion. Practical experiments showed that the BKEH output open-circuit voltage is up to 80.3 V, the output power reached as high as 3.16 W, and the power density reached as high as 7.9 W kg−1, which can effectively supply sufficient electrical power for wearable devices to work normally. The BKEH has a high practical value and good adaptability to human movement posture and can generate enough voltage and power to allow some wearable devices to work properly. These wearable devices can effectively provide users with the ability to monitor their work status and improve working conditions.

Funder

the Science and Technology Program of the Education Department of Jilin Province

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal and Mechanical Vibration Response of Auxetic Core Sandwich Smart Nanoplate;Advanced Engineering Materials;2024-07-09

2. Active self-powered human motion assist system;Smart Materials and Structures;2024-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3