Towards Efficient Neuromorphic Hardware: Unsupervised Adaptive Neuron Pruning

Author:

Guo WenzheORCID,Yantır Hasan ErdemORCID,Fouda Mohammed E.ORCID,Eltawil Ahmed M.ORCID,Salama Khaled NabilORCID

Abstract

To solve real-time challenges, neuromorphic systems generally require deep and complex network structures. Thus, it is crucial to search for effective solutions that can reduce network complexity, improve energy efficiency, and maintain high accuracy. To this end, we propose unsupervised pruning strategies that are focused on pruning neurons while training in spiking neural networks (SNNs) by utilizing network dynamics. The importance of neurons is determined by the fact that neurons that fire more spikes contribute more to network performance. Based on these criteria, we demonstrate that pruning with an adaptive spike count threshold provides a simple and effective approach that can reduce network size significantly and maintain high classification accuracy. The online adaptive pruning shows potential for developing energy-efficient training techniques due to less memory access and less weight-update computation. Furthermore, a parallel digital implementation scheme is proposed to implement spiking neural networks (SNNs) on field programmable gate array (FPGA). Notably, our proposed pruning strategies preserve the dense format of weight matrices, so the implementation architecture remains the same after network compression. The adaptive pruning strategy enables 2.3× reduction in memory size and 2.8× improvement on energy efficiency when 400 neurons are pruned from an 800-neuron network, while the loss of classification accuracy is 1.69%. And the best choice of pruning percentage depends on the trade-off among accuracy, memory, and energy. Therefore, this work offers a promising solution for effective network compression and energy-efficient hardware implementation of neuromorphic systems in real-time applications.

Funder

King Abdullah University of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3