A Low-Cost Method of Improving the GNSS/SINS Integrated Navigation System Using Multiple Receivers

Author:

Liu Di,Wang Hengjun,Xia Qingyuan,Jiang Changhui

Abstract

GNSS (global navigation satellite system) and SINS (strap-down inertial navigation system) integrated navigation systems have been the apparatus for providing reliable and stable position and velocity information (PV). Commonly, there are two solutions to improve the GNSS/SINS integration navigation system accuracy, i.e., employing GNSS with higher position accuracy in the integration system or utilizing the high-grade inertial measurement unit (IMU) to construct the integration system. However, technologies such as RTK (real-time kinematic) and PPP (precise point positioning) that improve GNSS positioning accuracy have higher costs and they cannot work under high dynamic environments. Also, an IMU with high accuracy will lead to a higher cost and larger volume, therefore, a low-cost method to enhance the GNSS/SINS integration accuracy is of great significance. In this paper, multiple receivers based on the GNSS/SINS integrated navigation system are proposed with the aim of providing more precise PV information. Since the chip-scale receivers are cheap, the deployment of multiple receivers in the GNSS/SINS integration will not significantly increase the cost. In addition, two different filtering methods with central and cascaded structure are employed to process the multiple receivers and SINS integration. In the centralized integration filter method, measurements from multiple receivers are directly processed to estimate the SINS errors state vectors. However, the computation load increases heavily due to the rising dimension of the measurement vector. Therefore, a cascaded integration filter structure is also employed to distribute the processing of the multiple receiver and SINS integration. In the cascaded processing method, each receiver is regarded as an individual “sensor”, and a standard federated Kalman filter (FKF) is implemented to obtain an optimal estimation of the navigation solutions. In this paper, a simulation and a field tests are carried out to assess the influence of the number of receivers on the PV accuracy. A detailed analysis of these position and velocity results is presented and the improvements in the PV accuracy demonstrate the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3