Fast and Accurate Approximation Methods for Trigonometric and Arctangent Calculations for Low-Performance Computers

Author:

Kusaka TakashiORCID,Tanaka TakayukiORCID

Abstract

In modern computers, complicated signal processing is highly optimized with the use of compilers and high-speed processing using floating-point units (FPUs); therefore, programmers have little opportunity to care about each process. However, a highly accurate approximation can be processed in a small number of computation cycles, which may be useful when embedded in a field-programmable gate array (FPGA) or micro controller unit (MCU), or when performing many large-scale operations on a graphics processing unit (GPU). It is necessary to devise algorithms to obtain the desired calculated values without an accelerator or compiler assistance. The residual correction method (RCM) developed here can produce simple and accurate approximations of certain nonlinear functions with minimal multiply–add operations. In this study, we designed an algorithm for the approximate computation of trigonometric and inverse trigonometric functions, which are nonlinear elementary functions, to achieve their fast and accurate computation. A fast first approximation and a more accurate second approximation of each function were created using RCM with a less than 0.001 error using multiply–add operations only. This achievement is particularly useful for MCUs, which have a low power consumption but limited computational power, and the proposed approximations are candidate algorithms that can be used to stabilize the attitude control of robots and drones, which require real-time processing.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3