A Generalized Series Expansion of the Arctangent Function Based on the Enhanced Midpoint Integration

Author:

Abrarov Sanjar M.123,Siddiqui Rehan234ORCID,Jagpal Rajinder Kumar24,Quine Brendan M.134

Affiliation:

1. Thoth Technology Inc., Algonquin Radio Observatory, Achray Rd., RR6, Pembroke, ON K8A 6W7, Canada

2. Epic College of Technology, 5670 McAdam Rd., Mississauga, ON L4Z 1T2, Canada

3. Department Earth and Space Science and Engineering, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada

4. Department Physics and Astronomy, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada

Abstract

In this work, we derive a generalized series expansion of the acrtangent function by using the enhanced midpoint integration (EMI). Algorithmic implementation of the generalized series expansion utilizes a two-step iteration without surd or complex numbers. The computational test we performed reveals that such a generalization improves the accuracy in computation of the arctangent function by many orders of magnitude with increasing integer M, associated with subintervals in the EMI formula. The generalized series expansion may be promising for practical applications. It may be particularly useful in practical tasks, where extensive computations with arbitrary precision floating points are needed. The algorithmic implementation of the generalized series expansion of the arctangent function shows a rapid convergence rate in the computation of digits of π in the Machin-like formulas.

Publisher

MDPI AG

Reference35 articles.

1. The higher derivatives of the inverse tangent function and rapidly convergent BBP-type formulas for pi;Adegoke;Appl. Math. E-Notes,2010

2. The higher derivatives of the inverse tangent function revisited;Lampret;Appl. Math. E-Notes,2011

3. Abrarov, S.M., and Quine, B.M. (2016). A Simple Identity for Derivatives of the Arctangent Function. arXiv.

4. Abrarov, S.M., and Quine, B.M. (2017). A Reformulated Series Expansion of the Arctangent Function. arXiv.

5. Abrarov, S.M., and Quine, B.M. (2017). An Iteration Procedure for a Two-Term Machin-like Formula for pi with Small Lehmer’s Measure. arXiv.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3