Multi-Agent Deep Reinforcement Learning-Based Partial Task Offloading and Resource Allocation in Edge Computing Environment

Author:

Ke HongchangORCID,Wang HuiORCID,Sun Hongbin

Abstract

In the dense data communication environment of 5G wireless networks, with the dramatic increase in the amount of request computation tasks generated by intelligent wireless mobile nodes, its computation ability cannot meet the requirements of low latency and high reliability. Mobile edge computing (MEC) can utilize its servers with mighty computation power and closer to tackle the computation tasks offloaded by the wireless node (WN). The physical location of the MEC server is closer to WN, thereby meeting the requirements of low latency and high reliability. In this paper, we implement an MEC framework with multiple WNs and multiple MEC servers, which consider the randomness and divisibility of arrival request tasks from WN, the time-varying channel state between WN and MEC server, and different priorities of tasks. In the proposed MEC system, we present a decentralized multi-agent deep reinforcement learning-based partial task offloading and resource allocation algorithm (DeMADRL) to minimize the long-term weighted cost including delay cost and bandwidth cost. DeMADRL is a model-free scheme based on Double Deep Q-Learning (DDQN) and can obtain the optimal computation offloading and bandwidth allocation decision-making policy by training the neural networks. The comprehensive simulation results show that the proposed DeMADRL optimization scheme has a nice convergence and outperforms the other three baseline algorithms.

Funder

Jilin Province Scientific and Technological Planning Project of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference36 articles.

1. A Practical Cross-Device Federated Learning Framework over 5G Networks

2. Investigation of Near-Field Source Localization Using Uniform Rectangular Array

3. A game-theoretic approach to computation offloading in mobile cloud computing

4. Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing;Guo;Proceedings of the IEEE INFOCOM 2016—The 35th Annual IEEE International Conference on Computer Communications,2016

5. Dynamic offloading for energy-aware scheduling in a mobile cloud

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3