Deep reinforcement learning‐based resource allocation in multi‐access edge computing

Author:

Khani Mohsen1ORCID,Sadr Mohammad Mohsen2,Jamali Shahram3

Affiliation:

1. Department of Computer Engineering, Semnan Branch Islamic Azad University Semnan Iran

2. Department of Computer and Information Technology Engineering Payame Noor University Tehran Iran

3. Department of Computer Engineering University of Mohaghegh Ardabili Ardabil Iran

Abstract

SummaryNetwork architects and engineers face challenges in meeting the increasing complexity and low‐latency requirements of various services. To tackle these challenges, multi‐access edge computing (MEC) has emerged as a solution, bringing computation and storage resources closer to the network's edge. This proximity enables low‐latency data access, reduces network congestion, and improves quality of service. Effective resource allocation is crucial for leveraging MEC capabilities and overcoming limitations. However, traditional approaches lack intelligence and adaptability. This study explores the use of deep reinforcement learning (DRL) as a technique to enhance resource allocation in MEC. DRL has gained significant attention due to its ability to adapt to changing network conditions and handle complex and dynamic environments more effectively than traditional methods. The study presents the results of applying DRL for efficient and dynamic resource allocation in MEC Computing, optimizing allocation decisions based on real‐time environment and user demands. By providing an overview of the current research on resource allocation in MEC using DRL, including components, algorithms, and the performance metrics of various DRL‐based schemes, this review article demonstrates the superiority of DRL‐based resource allocation schemes over traditional methods in diverse MEC conditions. The findings highlight the potential of DRL‐based approaches in addressing challenges associated with resource allocation in MEC.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3