Emotion Recognition from EEG Signals Using Recurrent Neural Networks

Author:

Chowdary M. KalpanaORCID,Anitha J.ORCID,Hemanth D. JudeORCID

Abstract

The application of electroencephalogram (EEG)-based emotion recognition (ER) to the brain–computer interface (BCI) has become increasingly popular over the past decade. Emotion recognition systems involve pre-processing and feature extraction, followed by classification. Deep learning has recently been used to classify emotions in BCI systems, and the results have been improved when compared to classic classification approaches. The main objective of this study is to classify the emotions from electroencephalogram signals using variant recurrent neural network architectures. Three architectures are used in this work for the recognition of emotions using EEG signals: RNN (recurrent neural network), LSTM (long short-term memory network), and GRU (gated recurrent unit). The efficiency of these networks, in terms of performance measures was confirmed by experimental data. The experiment was conducted by using the EEG Brain Wave Dataset: Feeling Emotions, and achieved an average accuracy of 95% for RNN, 97% for LSTM, and 96% for GRU for emotion detection problems.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3