Masked self‐supervised pre‐training model for EEG‐based emotion recognition

Author:

Hu Xinrong12,Chen Yu12,Yan Jinlin12,Wu Yuan12ORCID,Ding Lei12,Xu Jin12,Cheng Jun12

Affiliation:

1. Engineering Research Center of Hubei Province for Clothing Information Wuhan China

2. School of Computer Science and Artificial Intelligence Wuhan Textile University Wuhan China

Abstract

AbstractElectroencephalogram (EEG), as a tool capable of objectively recording brain electrical signals during emotional expression, has been extensively utilized. Current technology heavily relies on datasets, with its performance being limited by the size of the dataset and the accuracy of its annotations. At the same time, unsupervised learning and contrastive learning methods largely depend on the feature distribution within datasets, thus requiring training tailored to specific datasets for optimal results. However, the collection of EEG signals is influenced by factors such as equipment, settings, individuals, and experimental procedures, resulting in significant variability. Consequently, the effectiveness of models is heavily dependent on dataset collection efforts conducted under stringent objective conditions. To address these challenges, we introduce a novel approach: employing a self‐supervised pre‐training model, to process data across different datasets. This model is capable of operating effectively across multiple datasets. The model conducts self‐supervised pre‐training without the need for direct access to specific emotion category labels, enabling it to pre‐train and extract universally useful features without predefined downstream tasks. To tackle the issue of semantic expression confusion, we employed a masked prediction model that guides the model to generate richer semantic information through learning bidirectional feature combinations in sequence. Addressing challenges such as significant differences in data distribution, we introduced adaptive clustering techniques that manage by generating pseudo‐labels across multiple categories. The model is capable of enhancing the expression of hidden features in intermediate layers during the self‐supervised training process, enabling it to learn common hidden features across different datasets. This study, by constructing a hybrid dataset and conducting extensive experiments, demonstrated two key findings: (1) our model performs best on multiple evaluation metrics; (2) the model can effectively integrate critical features from different datasets, significantly enhancing the accuracy of emotion recognition.

Funder

Ningbo Municipal Bureau of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3