Hardware Acceleration and Approximation of CNN Computations: Case Study on an Integer Version of LeNet

Author:

Leveugle Régis1ORCID,Cogney Arthur2,Gah El Hilal Ahmed Baba2,Lailler Tristan2ORCID,Pieau Maxime2

Affiliation:

1. University Grenoble Alpes, CNRS, Grenoble INP, TIMA, 38000 Grenoble, France

2. University Grenoble Alpes, Grenoble INP, Polytech Grenoble, 38000 Grenoble, France

Abstract

AI systems have an increasing sprawling impact in many application areas. Embedded systems built on AI have strong conflictual implementation constraints, including high computation speed, low power consumption, high energy efficiency, strong robustness and low cost. Neural Networks (NNs) used by these systems are intrinsically partially tolerant to computation disturbances. As a consequence, they are an interesting target for approximate computing seeking reduced resources, lower power consumption and faster computation. Also, the large number of computations required by a single inference makes hardware acceleration almost unavoidable to globally meet the design constraints. The reported study, based on an integer version of LeNet, shows the possible gains when coupling approximation and hardware acceleration. The main conclusions can be leveraged when considering other types of NNs. The first one is that several approximation types that look very similar can exhibit very different trade-offs between accuracy loss and hardware optimizations, so the selected approximation has to be carefully chosen. Also, a strong approximation leading to the best hardware can also lead to the best accuracy. This is the case here when selecting the ApxFA5 adder approximation defined in the literature. Finally, combining hardware acceleration and approximate operators in a coherent manner also increases the global gains.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3