Abstract
Crowd monitoring was an essential measure to deal with over-tourism problems in urban destinations in the pre-COVID era. It will play a crucial role in the pandemic scenario when restarting tourism and making destinations safer. Notably, a Destination Management Organisation (DMO) of a smart destination needs to deploy a technological layer for crowd monitoring that allows data gathering in order to count visitors and distinguish them from residents. The correct identification of visitors versus residents by a DMO, while privacy rights (e.g., Regulation EU 2016/679, also known as GDPR) are ensured, is an ongoing problem that has not been fully solved. In this paper, we describe a novel approach to gathering crowd data by processing (i) massive scanning of WiFi access points of the smart destination to find SSIDs (Service Set Identifier), as well as (ii) the exposed Preferred Network List (PNL) containing the SSIDs of WiFi access points to which WiFi-enabled mobile devices are likely to connect. These data enable us to provide the number of visitors and residents of a crowd at a given point of interest of a tourism destination. A pilot study has been conducted in the city of Alcoi (Spain), comparing data from our approach with data provided by manually filled surveys from the Alcoi Tourist Info office, with an average accuracy of 83%, thus showing the feasibility of our policy to enrich the information system of a smart destination.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献