Analysis of Physiological Signals for Stress Recognition with Different Car Handling Setups

Author:

Zontone Pamela,Affanni AntonioORCID,Bernardini RiccardoORCID,Del Linz LeonidaORCID,Piras Alessandro,Rinaldo RobertoORCID

Abstract

When designing a car, the vehicle dynamics and handling are important aspects, as they can satisfy a purpose in professional racing, as well as contributing to driving pleasure and safety, real and perceived, in regular drivers. In this paper, we focus on the assessment of the emotional response in drivers while they are driving on a track with different car handling setups. The experiments were performed using a dynamic professional simulator prearranged with different car setups. We recorded various physiological signals, allowing us to analyze the response of the drivers and analyze which car setup is more influential in terms of stress arising in the subjects. We logged two skin potential responses (SPRs), the electrocardiogram (ECG) signal, and eye tracking information. In the experiments, three car setups were used (neutral, understeering, and oversteering). To evaluate how these affect the drivers, we analyzed their physiological signals using two statistical tests (t-test and Wilcoxon test) and various machine learning (ML) algorithms. The results of the Wilcoxon test show that SPR signals provide higher statistical significance when evaluating stress among different drivers, compared to the ECG and eye tracking signals. As for the ML classifiers, we count the number of positive or “stress” labels of 15 s SPR time intervals for each subject and each particular car setup. With the support vector machine classifier, the mean value of the number of positive labels for the four subjects is equal to 13.13% for the base setup, 44.16% for the oversteering setup, and 39.60% for the understeering setup. In the end, our findings show that the base car setup appears to be the least stressful, and that our system enables us to effectively recognize stress while the subjects are driving in the different car configurations.

Funder

VI-grade Srl

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3