Advanced Necklace for Real-Time PPG Monitoring in Drivers

Author:

Lo Grasso Anna1ORCID,Zontone Pamela2ORCID,Rinaldo Roberto1ORCID,Affanni Antonio1ORCID

Affiliation:

1. Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy

2. Department of Electrical, Electronic, Telecommunications Engineering and Naval Architecture, University of Genoa, 16145 Genoa, Italy

Abstract

Monitoring heart rate (HR) through photoplethysmography (PPG) signals is a challenging task due to the complexities involved, even during routine daily activities. These signals can indeed be heavily contaminated by significant motion artifacts resulting from the subjects’ movements, which can lead to inaccurate heart rate estimations. In this paper, our objective is to present an innovative necklace sensor that employs low-computational-cost algorithms for heart rate estimation in individuals performing non-abrupt movements, specifically drivers. Our solution facilitates the acquisition of signals with limited motion artifacts and provides acceptable heart rate estimations at a low computational cost. More specifically, we propose a wearable sensor necklace for assessing a driver’s well-being by providing information about the driver’s physiological condition and potential stress indicators through HR data. This innovative necklace enables real-time HR monitoring within a sleek and ergonomic design, facilitating seamless and continuous data gathering while driving. Prioritizing user comfort, the necklace’s design ensures ease of wear, allowing for extended use without disrupting driving activities. The collected physiological data can be transmitted wirelessly to a mobile application for instant analysis and visualization. To evaluate the sensor’s performance, two algorithms for estimating the HR from PPG signals are implemented in a microcontroller: a modified version of the mountaineer’s algorithm and a sliding discrete Fourier transform. The goal of these algorithms is to detect meaningful peaks corresponding to each heartbeat by using signal processing techniques to remove noise and motion artifacts. The developed design is validated through experiments conducted in a simulated driving environment in our lab, during which drivers wore the sensor necklace. These experiments demonstrate the reliability of the wearable sensor necklace in capturing dynamic changes in HR levels associated with driving-induced stress. The algorithms integrated into the sensor are optimized for low computational cost and effectively remove motion artifacts that occur when users move their heads.

Funder

Italian national research program PRIN (Progetti di ricerca di Rilevante Interesse Nazionale) 2022

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3