Human–Machine Interaction Using Probabilistic Neural Network for Light Communication Systems

Author:

Webber JulianORCID,Mehbodniya AbolfazlORCID,Teng Rui,Arafa AhmedORCID

Abstract

Hand gestures are a natural and efficient means to control systems and are one of the promising but challenging areas of human–machine interaction (HMI). We propose a system to recognize gestures by processing interrupted patterns of light in a visible light communications (VLC) system. Our solution is aimed at the emerging light communication systems and can facilitate the human–computer interaction for services in health-care, robot systems, commerce and the home. The system exploits existing light communications infrastructure using low-cost and readily available components. Different finger sequences are detected using a probabilistic neural network (PNN) trained on light transitions between fingers. A novel pre-processing of the sampled light on a photodiode is described to facilitate the use of the PNN with limited complexity. The contributions of this work include the development of a sensing technique for light communication systems, a novel PNN pre-processing methodology to convert the light sequences into manageable size matrices along with hardware implementation showing the proof of concept under natural lighting conditions. Despite the modest complexity our system could correctly recognize gestures with an accuracy of 73%, demonstrating the potential of this technology. We show that the accuracy depends on the PNN pre-processing matrix size and the Gaussian spread function. The emerging IEEE 802.11bb ‘Li-Fi’ standard is expected to bring the light communications infrastructure into virtually every room across the world and a methodology to exploit a system for gesture sensing is expected to be of considerable interest and value to society.

Funder

Kuwait Foundation for the Advancement of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference60 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3