Abstract
Clustering is one of the most significant applications in the big data field. However, using the clustering technique with big data requires an ample amount of processing power and resources due to the complexity and resulting increment in the clustering time. Therefore, many techniques have been implemented to improve the performance of the clustering algorithms, especially for k-means clustering. In this paper, the neural-processor-based k-means clustering technique is proposed to cluster big data by accumulating the advantage of dedicated machine learning processors of mobile devices. The solution was designed to be run with a single-instruction machine processor that exists in the mobile device’s processor. Running the k-means clustering in a distributed scheme run based on mobile machine learning efficiently can handle the big data clustering over the network. The results showed that using a neural engine processor on a mobile smartphone device can maximize the speed of the clustering algorithm, which shows an improvement in the performance of the cluttering up to two-times faster compared with traditional laptop/desktop processors. Furthermore, the number of iterations that are required to obtain (k) clusters was improved up to two-times faster than parallel and distributed k-means.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献