Efficiently Estimating Joining Cost of Subqueries in Regular Path Queries

Author:

Nguyen Van-QuyetORCID,Nguyen Van-HauORCID,Nguyen Minh-Quy,Huynh Quyet-ThangORCID,Kim KyungbaekORCID

Abstract

Evaluating Regular Path Queries (RPQs) have been of interest since they were used as a powerful way to explore paths and patterns in graph databases. Traditional automata-based approaches are restricted in the graph size and/or highly complex queries, which causes a high evaluation cost (e.g., memory space and response time) on large graphs. Recently, although using the approach based on the threshold rare label for large graphs has been achieving some success, they could not often guarantee the minimum searching cost. Alternatively, the Unit-Subquery Cost Matrix (USCM) has been studied and obtained the viability of the usage of subqueries. Nevertheless, this method has an issue, which is, it does not cumulate the cost among subqueries that causes the long response time on a large graph. In order to overcome this issue, this paper proposes a method for estimating joining cost of subqueries to accelerate the USCM based parallel evaluation of RPQs on a large graph, namely USCM-Join. Through real-world datasets, we experimentally show that the USCM-Join outperforms others and estimating the joining cost enhances the USCM based approach up to around 20% in terms of response time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3