Performance Evaluation of an API Stock Exchange Web System on Cloud Docker Containers

Author:

Rak Tomasz1ORCID

Affiliation:

1. Department of Computer and Control Engineering, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland

Abstract

This study aims to identify the most effective input parameters for performance modelling of container-based web systems. We introduce a method using queueing Petri nets to model web system performance for containerized structures, leveraging prior measurement data for resource demand estimation. This approach eliminates intrusive interventions in the production system. Our research evaluates the accuracy of various formal estimation methods, pinpointing the most suitable for container environments. With the use of a stock exchange web system benchmark for data collection and simulation verification, our findings reveal that the proposed method ensures precise response time parameter accuracy for such architectural configurations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Rak, T. (2021). Cognitive Informatics and Soft Computing, Springer.

2. An Effective Classification-Based Framework for Predicting Cloud Capacity Demand in Cloud Services;Xia;IEEE Trans. Serv. Comput.,2021

3. Prediction of Cloud Resources Demand Based on Hierarchical Pythagorean Fuzzy Deep Neural Network;Chen;IEEE Trans. Serv. Comput.,2021

4. Rak, T., and Żyła, R. (2022). Using Data Mining Techniques for Detecting Dependencies in the Outcoming Data of a Web-Based System. Appl. Sci., 12.

5. Performance Modeling Using Queueing Petri Nets;Rak;Computer Networks, Proceedings of the 24th International Conference on Computer Networks, Ladek Zdroj, Poland, 20–23 June 2017,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3