An Improved Algorithm for Extracting Subtle Features of Radiation Source Individual Signals

Author:

Li Jingchao,Bi Dongyuan,Ying Yulong,Wei Kai,Zhang BinORCID

Abstract

With the rapid development of communication and information technology, it is difficult for traditional signal detection and recognition methods to accurately acquire and identify the intelligence under complex environments. In order to solve this problem, this paper proposes a subtle feature extraction and recognition algorithm for radiation source individual signals based on multidimensional hybrid features. Firstly, Hilbert transform was performed on the radiation source signals from 10 identical radio devices, and the subtle features of different radiation sources’ signals were extracted. Then, traditional principal component analysis (PCA) algorithm was used to extract and reduce the principal components of the extracted feature data sets. Aiming at the insufficiency of traditional PCA algorithm, an improved principal component analysis algorithm was proposed. At last, a gray relation algorithm was used to classify and identify the radiation source individual signals, and the recognition rate was calculated. Experimental results show that Hilbert transform combined with the improved PCA algorithm can achieve a recognition rate of 99.67% for the "fingerprint" features of radiation source individual signals under the signal-to-noise ratio (SNR) of 20dB. Compared with the traditional algorithms, the recognition rate increased by 5.67%. Therefore, it provides a powerful theoretical basis for extracting subtle features of radiation source devices under complex electromagnetic environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. Extraction of Amplifier Fingerprints from Narrow Band Signal: Principle Analysis and FM Broadcast Experiment;Dan;Acta Electron. Sinica,2008

2. Summary of techniques for extracting individual characteristics of radiation sources;Bin;Telecommun. Technol.,2011

3. Recognition of Radar Focal Sources under Multi-core Fusion Framework;Shi;J. Electron. Lett.,2014

4. A New Feature Extraction Algorithm Based on Entropy Cloud Characteristics of Communication Signals

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3