A New Feature Extraction Algorithm Based on Entropy Cloud Characteristics of Communication Signals

Author:

Li Jingchao1,Guo Jian2

Affiliation:

1. Electronic Information College, Shanghai Dianji University, Shanghai 200240, China

2. College of Engineering, Western New England University, Springfield, MA, USA

Abstract

Identifying communication signals under low SNR environment has become more difficult due to the increasingly complex communication environment. Most relevant literatures revolve around signal recognition under stable SNR, but not applicable under time-varying SNR environment. To solve this problem, we propose a new feature extraction method based on entropy cloud characteristics of communication modulation signals. The proposed algorithm extracts the Shannon entropy and index entropy characteristics of the signals first and then effectively combines the entropy theory and cloud model theory together. Compared with traditional feature extraction methods, instability distribution characteristics of the signals’ entropy characteristics can be further extracted from cloud model’s digital characteristics under low SNR environment by the proposed algorithm, which improves the signals’ recognition effects significantly. The results from the numerical simulations show that entropy cloud feature extraction algorithm can achieve better signal recognition effects, and even when the SNR is −11 dB, the signal recognition rate can still reach 100%.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3