Transfer-Learning-Enhanced Regression Generative Adversarial Networks for Optimal eVTOL Takeoff Trajectory Prediction

Author:

Yeh Shuan-Tai1,Du Xiaosong2

Affiliation:

1. Department of Aerospace Engineering, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA

2. Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA

Abstract

Electric vertical takeoff and landing (eVTOL) aircraft represent a crucial aviation technology to transform future transportation systems. The unique characteristics of eVTOL aircraft include reduced noise, low pollutant emission, efficient operating cost, and flexible maneuverability, which in the meantime pose critical challenges to advanced power retention techniques. Thus, optimal takeoff trajectory design is essential due to immense power demands during eVTOL takeoffs. Conventional design optimizations, however, adopt high-fidelity simulation models in an iterative manner resulting in a computationally intensive mechanism. In this work, we implement a surrogate-enabled inverse mapping optimization architecture, i.e., directly predicting optimal designs from design requirements (including flight conditions and design constraints). A trained inverse mapping surrogate performs real-time optimal eVTOL takeoff trajectory predictions with no need for running optimizations; however, one training sample requires one design optimization in this inverse mapping setup. The excessive training cost of inverse mapping and the characteristics of optimal eVTOL takeoff trajectories necessitate the development of the regression generative adversarial network (regGAN) surrogate. We propose to further enhance regGAN predictive performance through the transfer learning (TL) technique, creating a scheme termed regGAN-TL. In particular, the proposed regGAN-TL scheme leverages the generative adversarial network (GAN) architecture consisting of a generator network and a discriminator network, with a combined loss of the mean squared error (MSE) and binary cross-entropy (BC) losses, for regression tasks. In this work, the generator employs design requirements as input and produces optimal takeoff trajectory profiles, while the discriminator differentiates the generated profiles and real optimal profiles in the training set. The combined loss facilitates the generator training in the dual aspects: the MSE loss targets minimum differences between generated profiles and training counterparts, while the BC loss drives the generated profiles to share analogous patterns with the training set. We demonstrated the utility of regGAN-TL on optimal takeoff trajectory designs for the Airbus A3 Vahana and compared its performance against representative surrogates, including the multi-output Gaussian process, the conditional GAN, and the vanilla regGAN. Results showed that regGAN-TL reached the 99.5% generalization accuracy threshold with only 200 training samples while the best reference surrogate required 400 samples. The 50% reduction in training expense and reduced standard deviations of generalization accuracy achieved by regGAN-TL confirmed its outstanding predictive performance and broad engineering application potential.

Publisher

MDPI AG

Reference72 articles.

1. Johnson, W., Silva, C., and Solis, E. (2018, January 16–19). Concept Vehicles for VTOL Air Taxi Operations. Proceedings of the Proceedings of the AHS technical conference on Aeromechanics Design for Transformative Vertical Flight, San Francisco, CA, USA.

2. Bacchini, A., and Cestino, E. (2019). Electric VTOL Configurations Comparison. Aerospace, 6.

3. Electric VTOL News (2023, September 24). Airbus CityAirbus NextGen (Technology Demonstrator). Available online: https://evtol.news/airbus-cityairbus-nextgen.

4. Electric VTOL News (2023, June 27). Aurora Flight Sciences Pegasus PAV. Available online: https://evtol.news/aurora/.

5. Wikipedia (2023, June 27). EHang. Available online: https://en.wikipedia.org/wiki/EHang.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3