Surrogate-Based Multidisciplinary Optimization for the Takeoff Trajectory Design of Electric Drones

Author:

Sisk Samuel1,Du Xiaosong1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO 65401, USA

Abstract

Electric vertical takeoff and landing (eVTOL) aircraft attract attention due to their unique characteristics of reduced noise, moderate pollutant emission, and lowered operating cost. However, the benefits of electric vehicles, including eVTOL aircraft, are critically challenged by the energy density of batteries, which prohibit long-distance tasks and broader applications. Since the takeoff process of eVTOL aircraft demands excessive energy and couples multiple subsystems (such as aerodynamics and propulsion), multidisciplinary analysis and optimization (MDAO) become essential. Conventional MDAO, however, iteratively evaluates high-fidelity simulation models, making the whole process computationally intensive. Surrogates, in lieu of simulation models, empower efficient MDAO with the premise of sufficient accuracy, but naive surrogate modeling could result in an enormous training cost. Thus, this work develops a twin-generator generative adversarial network (twinGAN) model to intelligently parameterize takeoff power and wing angle profiles of an eVTOL aircraft. The twinGAN-enabled surrogate-based takeoff trajectory design framework was demonstrated on the Airbus A3 Vahana aircraft. The twinGAN provisioned two-fold dimensionality reductions. First, twinGAN generated only realistic trajectory profiles of power and wing angle, which implicitly reduced the design space. Second, twinGAN with three variables represented the takeoff trajectory profiles originally parameterized using 40 B-spline control points, which explicitly reduced the design space while maintaining sufficient variability, as verified by fitting optimization. Moreover, surrogate modeling with respect to the three twinGAN variables, total takeoff time, mass, and power efficiency, reached around 99% accuracy for all the quantities of interest (such as vertical displacement). Surrogate-based, derivative-free optimizations obtained over 95% accuracy and reduced the required computational time by around 26 times compared with simulation-based, gradient-based optimization. Thus, the novelty of this work lies in the fact that the twinGAN model intelligently parameterized trajectory designs, which achieved implicit and explicit dimensionality reductions. Additionally, twinGAN-enabled surrogate modeling enabled the efficient takeoff trajectory design with high accuracy and computational cost reduction.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3