Automated Assessment of Initial Answers to Questions in Conversational Intelligent Tutoring Systems: Are Contextual Embedding Models Really Better?

Author:

Carmon Colin M.12,Morgan Brent3ORCID,Hu Xiangen12,Graesser Arthur C.12

Affiliation:

1. Institute for Intelligent Systems, University of Memphis, Memphis, TN 38152, USA

2. Department of Psychology, University of Memphis, Memphis, TN 38152, USA

3. Department of Psychology, Rhodes College, Memphis, TN 38112, USA

Abstract

This paper assesses the ability of semantic text models to assess student responses to electronics questions compared with that of expert human judges. Recent interest in text similarity has led to a proliferation of models that can potentially be used for assessing student responses. However, it is unclear whether these models perform as well as early models of distributional semantics. We assessed 5166 response pairings of 219 participants across 118 electronics questions and scored each with 13 different computational text models, including models that use Regular Expressions, distributional semantics, embeddings, contextual embeddings, and combinations of these features. Regular Expressions performed the best out of the stand-alone models. We show other semantic text models performing comparably to the Latent Semantic Analysis model that was originally used for the current task, and in a small number of cases outperforming the model. Models trained on a domain-specific electronics corpus for the task performed better than models trained on general language or Newtonian physics. Furthermore, semantic text models combined with RegEx outperformed stand-alone models in agreement with human judges. Tuning the performance of these recent models in Automatic Short Answer Grading tasks for conversational intelligent tutoring systems requires empirical analysis, especially in domain-specific areas such as electronics. Therefore, the question arises as to how well recent contextual embedding models compare with earlier distributional semantic language models on this task of answering questions about electronics. These results shed light on the selection of appropriate computational techniques for text modeling to improve the accuracy, recall, weighted agreement, and ultimately the effectiveness of automatic scoring in conversational ITSs.

Funder

National Science Foundation Data Infrastructure Building Blocks program

Office of Naval Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3