Efficient ϵ-Approximate k-Flexible Aggregate Nearest Neighbor Search for Arbitrary ϵ in Road Networks

Author:

Kwon Hyuk-Yoon1ORCID,Yoo Jaejun2,Loh Woong-Kee3ORCID

Affiliation:

1. Department of Industrial Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

2. Mobility UX Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea

3. School of Computing, Gachon University, Seongnam 13120, Republic of Korea

Abstract

Recently, complicated spatial search algorithms have emerged as spatial-information-based applications, such as location-based services (LBS), and have become very diverse and frequent. The aggregate nearest neighbor (ANN) search is an extension of the existing nearest neighbor (NN) search; it finds the object p* that minimizes G{d(p*,qi),qi∈Q} from a set Q of M (≥1) query objects, where G is an aggregate function and d() is the distance between two objects. The flexible aggregate nearest neighbor (FANN) search is an extension of the ANN search by introducing flexibility factor ϕ(0<ϕ≤1); it finds the object p* that minimizes G{d(p*,qi),qi∈Qϕ} from Qϕ, a subset of Q with |Qϕ|=ϕ|Q|. This paper proposes an efficient ϵ-approximate k-FANN (k≥1) search algorithm for an arbitrary approximation ratio ϵ (≥1) in road networks. In general, ϵ-approximate algorithms are expected to give an improved search performance at the cost of allowing an error ratio of up to the given ϵ. Since the optimal value of ϵ varies greatly depending on applications and cases, the approximate algorithm for an arbitrary ϵ is essential. We prove that the error ratios of the approximate FANN objects returned by our algorithm do not exceed the given ϵ. To the best of our knowledge, our algorithm is the first ϵ-approximate k-FANN search algorithm in road networks for an arbitrary ϵ. Through a series of experiments using various real-world road network datasets, we demonstrated that our approximate algorithm always outperformed the previous state-of-the-art exact algorithm and that the error ratios of the approximate FANN objects were significantly lower than the given ϵ value.

Funder

Institute of Information & Communications Technology Planning & Evaluation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3