Affiliation:
1. Monash University, Australia
Abstract
A
k
nearest neighbor (
k
NN) query on road networks retrieves the
k
closest points of interest (POIs) by their network distances from a given location. Today, in the era of ubiquitous mobile computing, this is a highly pertinent query. While Euclidean distance has been used as a heuristic to search for the closest POIs by their road network distance, its efficacy has not been thoroughly investigated. The most recent methods have shown significant improvement in query performance. Earlier studies, which proposed disk-based indexes, were compared to the current state-of-the-art in main memory. However, recent studies have shown that main memory comparisons can be challenging and require careful adaptation. This paper presents an extensive experimental investigation in main memory to settle these and several other issues. We use efficient and fair memory-resident implementations of each method to reproduce past experiments and conduct additional comparisons for several overlooked evaluations. Notably we revisit a previously discarded technique (IER) showing that, through a simple improvement, it is often the best performing technique.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
144 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献