Affiliation:
1. National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China
2. Naval Aviation University, Yantai 264001, China
Abstract
To address the problem that conventional neural networks trained on radar echo data cannot handle the phase of the echoes, resulting in insufficient information utilization and limited performance in detection and classification, we extend neural networks from the real-valued neural networks to the complex-valued neural networks, presenting a novel algorithm for classifying small sea surface targets. The proposed algorithm leverages an improved residual fusion network and complex time–frequency spectra. Specifically, we augment the Deep Residual Network-50 (ResNet50) with a spatial pyramid pooling (SPP) module to fuse feature maps from different receptive fields. Additionally, we enhance the feature extraction and fusion capabilities by replacing the conventional residual block layer with a multi-branch residual fusion (MBRF) module. Furthermore, we construct a complex time–frequency spectrum dataset based on radar echo data from four different types of sea surface targets. We employ a complex-valued improved residual fusion network for learning and training, ultimately yielding the result of small target classification. By incorporating both the real and imaginary parts of the echoes, the proposed complex-valued improved residual fusion network has the potential to extract more comprehensive features and enhance classification performance. Experimental results demonstrate that the proposed method achieves superior classification performance across various evaluation metrics.
Funder
National Natural Science Foundation of China