Classification of Small Targets on Sea Surface Based on Improved Residual Fusion Network and Complex Time–Frequency Spectra

Author:

Xu Shuwen1ORCID,Niu Xiaoqing1,Ru Hongtao1,Chen Xiaolong2ORCID

Affiliation:

1. National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China

2. Naval Aviation University, Yantai 264001, China

Abstract

To address the problem that conventional neural networks trained on radar echo data cannot handle the phase of the echoes, resulting in insufficient information utilization and limited performance in detection and classification, we extend neural networks from the real-valued neural networks to the complex-valued neural networks, presenting a novel algorithm for classifying small sea surface targets. The proposed algorithm leverages an improved residual fusion network and complex time–frequency spectra. Specifically, we augment the Deep Residual Network-50 (ResNet50) with a spatial pyramid pooling (SPP) module to fuse feature maps from different receptive fields. Additionally, we enhance the feature extraction and fusion capabilities by replacing the conventional residual block layer with a multi-branch residual fusion (MBRF) module. Furthermore, we construct a complex time–frequency spectrum dataset based on radar echo data from four different types of sea surface targets. We employ a complex-valued improved residual fusion network for learning and training, ultimately yielding the result of small target classification. By incorporating both the real and imaginary parts of the echoes, the proposed complex-valued improved residual fusion network has the potential to extract more comprehensive features and enhance classification performance. Experimental results demonstrate that the proposed method achieves superior classification performance across various evaluation metrics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3