Quality of Service Generalization using Parallel Turing Integration Paradigm to Support Machine Learning

Author:

Razaque Abdul1ORCID,Frej Mohamed Ben Haj2ORCID,Bektemyssova Gulnara3ORCID,Almi’ani Muder4,Amsaad Fathi5ORCID,Alotaibi Aziz6ORCID,Jhanjhi Noor Z.7ORCID,Ali Mohsin3ORCID,Amanzholova Saule1,Alshammari Majid6ORCID

Affiliation:

1. Department of Cyber Security, International Information Technology University, Almaty 050000, Kazakhstan

2. Department of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT 06604, USA

3. Department of Computer Engineering, International Information Technology University, Almaty 050000, Kazakhstan

4. Department of Management Information System (MIS), Gulf University for Science and Technology, Kuwait City 32093, Kuwait

5. Department of Computer Science, Joshi Research Center, University of Wright, Dayton, OH 45435, USA

6. Computers and Information Technology College, Taif University, Taif 21974, Saudi Arabia

7. School of Computer Science, Taylor’s University, Subang Jaya 47500, Malaysia

Abstract

The Quality-of-Service (QoS) provision in machine learning is affected by lesser accuracy, noise, random error, and weak generalization (ML). The Parallel Turing Integration Paradigm (PTIP) is introduced as a solution to lower accuracy and weak generalization. A logical table (LT) is part of the PTIP and is used to store datasets. The PTIP has elements that enhance classifier learning, enhance 3-D cube logic for security provision, and balance the engineering process of paradigms. The probability weightage function for adding and removing algorithms during the training phase is included in the PTIP. Additionally, it uses local and global error functions to limit overconfidence and underconfidence in learning processes. By utilizing the local gain (LG) and global gain (GG), the optimization of the model’s constituent parts is validated. By blending the sub-algorithms with a new dataset in a foretelling and realistic setting, the PTIP validation is further ensured. A mathematical modeling technique is used to ascertain the efficacy of the proposed PTIP. The results of the testing show that the proposed PTIP obtains lower relative accuracy of 38.76% with error bounds reflection. The lower relative accuracy with low GG is considered good. The PTIP also obtains 70.5% relative accuracy with high GG, which is considered an acceptable accuracy. Moreover, the PTIP gets better accuracy of 99.91% with a 100% fitness factor. Finally, the proposed PTIP is compared with cutting-edge, well-established models and algorithms based on different state-of-the-art parameters (e.g., relative accuracy, accuracy with fitness factor, fitness process, error reduction, and generalization measurement). The results confirm that the proposed PTIP demonstrates better results as compared to contending models and algorithms.

Funder

Taif University Researchers Supporting Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3