Pressurized Liquid Extraction (PLE) in an Intermittent Process as an Alternative for Obtaining Passion Fruit (Passiflora edulis) Leaf Hydroalcoholic Extract (Tincture)

Author:

da Cunha Rodrigues Larissa1,Bodini Renata Barbosa1,Caneppele Fernando de Lima2,Dacanal Gustavo César3ORCID,Crevelin Eduardo José4,de Moraes Luiz Alberto Beraldo4,de Oliveira Alessandra Lopes1

Affiliation:

1. Laboratory of High Pressure Technology and Natural Products, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil

2. Energy and Simulation in Biosystems Engineering and Agribusiness, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil

3. Laboratory of Fluid Dynamics and Characterization of Particulate Systems, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, Brazil

4. Mass Spectrometry Laboratory, Department of Chemistry, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo (USP), Av. Bandeirantes, 3900 Monte Alegre, Ribeirão Preto 14015-130, Brazil

Abstract

Tinctures are medicinal plant extracts obtained by extraction with a hydroalcoholic solution (70%) by percolation (PER). This process takes about 26 h to prepare, in addition to using a large amount of solvent. In our research, passion fruit leaf tinctures were obtained using extract with the same pressurized hydroalcoholic solution as in an intermittent process. The objective was to demonstrate that this emerging technology can be economical and profitable. An optimization using Central Composite Rotatable Design (CCRD) was performed to evaluate the influence of process variables on the yields and compositions of the extracts. The temperature (T) was the factor that most influenced the responses. Extraction with pressurized liquid (PLE) provided total yields and total phenolic and flavonoid contents in greater amounts than PER. The optimized conditions of the process variables studied in the CCRD for the highest content of total phenolics (43.2 mg GAE/g) and flavonoids (58.8 mg QE/g) were at 100 °C with a rinse volume of 120% of the divided extractor volume in four cycles of the intermittent process. When adjusting the PLE in an intermittent process, and according to the one-dimensional mass transfer by the continuous diffusion of the Fick model, the effective diffusion coefficient (1.28 × 10−12 m2/s) was not affected by T. The kinetic curve of PLE extraction indicates that the adjusted intermittent process occurred in the period of the constant extraction rate when compared to the kinetics of the semi-continuous process. The yielded extracts were rich in isovitexin, and the highest levels were identified in the extracts obtained via PLE, indicating that this intermittent process can bring a product to market with the same quality but with a much shorter production time and the use of fewer solvents. Antioxidant activity, determined by DPPH, FRAP and ORAC, was also higher in extracts obtained via PLE.

Funder

Fundação de Amaparo a Pesquisa do Estado de São Paulo

Conselho Nacional de Desinvolvimento Científico e Tecnológico

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3