Abstract
Convenient indoor positioning has become an urgent need due to the improvement it offers to quality of life, which inspires researchers to focus on device-free indoor location. In areas covered with Wi-Fi, people in different locations will to varying degrees have an impact on the transmission of channel state information (CSI) of Wi-Fi signals. Because space is divided into several small regions, the idea of classification is used to locate. Therefore, a novel localization algorithm is put forward in this paper based on Deep Neural Networks (DNN) and a multi-model integration strategy. The approach consists of three stages. First, the local outlier factor (LOF), the anomaly detection algorithm, is used to correct the abnormal data. Second, in the training phase, 3 DNN models are trained to classify the region fingerprints by taking advantage of the processed CSI data from 3 antennas. Third, in the testing phase, a model fusion method named group method of data handling (GMDH) is adopted to integrate 3 predicted results of multiple models and give the final position result. The test-bed experiment was conducted in an empty corridor, and final positioning accuracy reached at least 97%.
Funder
National Natural Science Foundation of China
Xuzhou Applied Basic Research Program
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献