Effect of the Architecture of Fiber-Optic Probes Designed for Soluble Solid Content Prediction in Intact Sugar Beet Slices

Author:

Bendoula Ryad,Ducanchez ArnaudORCID,Herrero-Langreo Ana,Guerrero-Castro Pablo,Roger Jean-MichelORCID,Gobrecht Alexia

Abstract

Sugar beet is the second biggest world contributor to sugar production and the only one grown in Europe. One of the main limitations for its competitiveness is the lack of effective tools for assessing sugar content in unprocessed sugar beet roots, especially in breeding programs. In this context, a dedicated near infrared (NIR) fiber-optic probe based approach is proposed. NIR technology is widely used for the estimation of sugar content in vegetable products, while optic fibers allow a wide choice of technical properties and configurations. The objective of this research was to study the best architecture through different technical choices for the estimation of sugar content in intact sugar beet roots. NIR spectral measurements were taken on unprocessed sugar beet samples using two types of geometries, single and multiple fiber-probes. Sugar content estimates were more accurate when using multiple fiber-probes (up to R2 = 0.93) due to a lesser disruption of light specular reflection. In turn, on this configuration, the best estimations were observed for the smallest distances between emitting and collecting fibers, reducing the proportion of multiply scattered light in the spectra. Error of prediction (RPD) values of 3.95, 3.27 and 3.09 were obtained for distances between emitting and collecting fibers of 0.6, 1.2 and 1.8 µm respectively. These high RPD values highlight the good predictions capacities of the multi-fiber probes. Finally, this study contributes to a better understanding of the effects of the technical properties of optical fiber-probes on the quality of spectral models. In addition, and beyond this specificity related to sugar beet, these findings could be extended to other turbid media for quantitative optical spectroscopy and eventually to validate considered fiber-optic probe design obtained in this experimental study.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Near-infrared spatially-resolved spectroscopy for milk quality analysis;Computers and Electronics in Agriculture;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3