Design of Optical Tweezers Manipulation Control System Based on Novel Self-Organizing Fuzzy Cerebellar Model Neural Network

Author:

Zhao Jing,Hou Hui,Huang Qi-YuORCID,Zhong Xun-Gao,Zheng Peng-Sheng

Abstract

Holographic optical tweezers have unique non-physical contact and can manipulate and control single or multiple cells in a non-invasive way. In this paper, the dynamics model of the cells captured by the optical trap is analyzed, and a control system based on a novel self-organizing fuzzy cerebellar model neural network (NSOFCMNN) is proposed and applied to the cell manipulation control of holographic optical tweezers. This control system consists of a main controller using the NSOFCMNN with a new self-organization mechanism, a robust compensation controller, and a higher order sliding mode. It can accurately move the captured cells to the expected position through the optical trap generated by the holographic optical tweezers system. Both the layers and blocks of the proposed NSOFCMNN can be adjusted online according to the new self-organization mechanism. The compensation controller is used to eliminate the approximation errors. The higher order sliding surface can enhance the performance of controllers. The distances between cells are considered in order to further realize multi-cell cooperative control. In addition, the stability and convergence of the proposed NSOFCMNN are proved by the Lyapunov function, and the learning law is updated online by the gradient descent method. The simulation results show that the control system based on the proposed NSOFCMNN can effectively complete the cell manipulation task of optical tweezers and has better control performance than other neural network controllers.

Funder

the Natural Science Foundationof Science and Technology agency, Fujian, China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3