Improvement of Dust Particle Suction Efficiency by Controlling the Airflow of a Regenerative Air Sweeper

Author:

Fayzullayevich Jamshid ValievORCID,Tan Gangfeng,Alex Frimpong J.ORCID,Agyeman Philip K.ORCID,Wu Yongjia

Abstract

In a regenerative air sweeper, airflow and dust particles entering the system are filtered and recirculated within the system. The uncirculated portion of the exhaust air in the system spreads to the ambient air, and PM2.5 dust in the air can poison the environment and adversely affect human health. The development of an airflow control system to reduce road dust emissions and improve air quality was the main contribution of this study. A regenerative air sweeper airflow control system is designed to direct the air from the centrifugal fan back into the pickup head to fully absorb the dust particles and balance the positive and negative air pressures inside the pickup head. The modeling and analysis of the dust control system were performed using an experimental test rig system. A mathematical model of the fundamental parameters of the regenerative air sweeper and dust control system was established. Computational fluid dynamics (CFD) ANSYS was used for the analysis to determine the direction of airflow via the suction and inlet ducts. The discrete particle model (DPM) accurately predicted particle trajectories and measured the suction efficiency of particles of different shapes and types. By controlling the circulating harmful air flow in the system, the amount of PM2.5 released into the atmosphere was reduced by 90%. The suction efficiency of the 200 μm sized sand particles was higher than 95%. The results provide theoretical and methodological assistance for the development of improved road sweeper dust control systems.

Funder

Ningxia Key R&D Planning Project of China.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3