A Study on the Improvement of Filter Performance to Remove Indoor Air Pollution

Author:

Kim Yong-Sun1,Kim Hong-Gun1,Kwac Lee-Ku2,Ko Sang-Cheol2ORCID

Affiliation:

1. Institute of Carbon Technology, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabukdo, Republic of Korea

2. Graduate School of Carbon Convergence Engineering, Jeonju University, 303 Cheonjam-ro, Wansan-gu, Jeonju-si 55069, Jeollabukdo, Republic of Korea

Abstract

This study carried out a simplified baffle filter shape study on the over the range (OTR) filter used in a general kitchen. In order to improve the filter’s efficiency, the simulation was performed using ANSYS FLUENT and COMSOL Multiphysics, and a wind tunnel test apparatus was manufactured to minimize the error rate of dust collection efficiency in the experiment. In the case of a physical filter, it was confirmed through a theoretical review that dust is collected in the filter by the inertial collision method, and the flow velocity must be increased to increase the dust collection efficiency. To increase the flow velocity and increase the filter contact area, the use of sub-filters and the Coanda effect was proposed and simulated. When only the Coanda effect was applied, the collection efficiency increased by about 7–15% compared to the original filter, and when the three types of sub-filters were proposed, and among them, a circular sub-filter was applied, it increased by 25%. When applying the sub-filter and the Coanda effect at the same time, it was confirmed that the sub-filter was more efficient than the Coanda effect. However, in the case of a physical filter, since it cannot collect particles less than PM2.5, the electric dust collection method was proposed and a simulation was conducted. The possibility of removing ultrafine dust below PM2.5 was secured by using an electric dust-collection filter simulation, and it is expected that the reliability will be secured by using experimental devices and products in the future.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference29 articles.

1. A Numerical Study on the Performance Improvement of Kitchen Range Hood by Air Induction and Air Curtain;Sohn;Korea J. Air Cond. Refrig. Eng.,2007

2. Development Trend of Nanofiber Filter;Kim;Membr. J.,2006

3. A Study on Improving Filter Performance Using Coanda Effect;Kim;J. KSMPE,2020

4. A Study on the Collecting Efficiency of Oil-mist Filter according to the Sub-filter Shape;Kim;J. KSMPE,2019

5. A study on the photocatalyst filter design using UV-C;Han;J. KCGCT,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3