A Visual Saliency-Based Neural Network Architecture for No-Reference Image Quality Assessment

Author:

Ryu JihyoungORCID

Abstract

Deep learning has recently been used to study blind image quality assessment (BIQA) in great detail. Yet, the scarcity of high-quality algorithms prevents from developing them further and being used in a real-time scenario. Patch-based techniques have been used to forecast the quality of an image, but they typically award the picture quality score to an individual patch of the image. As a result, there would be a lot of misleading scores coming from patches. Some regions of the image are important and can contribute highly toward the right prediction of its quality. To prevent outlier regions, we suggest a technique with a visual saliency module which allows the only important region to bypass to the neural network and allows the network to only learn the important information required to predict the quality. The neural network architecture used in this study is Inception-ResNet-v2. We assess the proposed strategy using a benchmark database (KADID-10k) to show its efficacy. The outcome demonstrates better performance compared with certain popular no-reference IQA (NR-IQA) and full-reference IQA (FR-IQA) approaches. This technique is intended to be utilized to estimate the quality of an image being acquired in real time from drone imagery.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. No-reference stereoscopic image quality assessment based on global and local content characteristics

2. Automatic prediction of perceptual image and video quality;Bovik;Proc. IEEE,2013

3. Image transmission through wireless channel: A review;Chandra;Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES),2016

4. Modulating image restoration with continual levels via adaptive feature modification layers;He;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019

5. Blind image quality assessment based on the multiscale and dual-domains features fusion;Lu,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3