Adaptive Hybrid Storage Format for Sparse Matrix–Vector Multiplication on Multi-Core SIMD CPUs

Author:

Chen Shizhao,Fang Jianbin,Xu Chuanfu,Wang Zheng

Abstract

Optimizing sparse matrix–vector multiplication (SpMV) is challenging due to the non-uniform distribution of the non-zero elements of the sparse matrix. The best-performing SpMV format changes depending on the input matrix and the underlying architecture, and there is no “one-size-fit-for-all” format. A hybrid scheme combining multiple SpMV storage formats allows one to choose an appropriate format to use for the target matrix and hardware. However, existing hybrid approaches are inadequate for utilizing the SIMD cores of modern multi-core CPUs with SIMDs, and it remains unclear how to best mix different SpMV formats for a given matrix. This paper presents a new hybrid storage format for sparse matrices, specifically targeting multi-core CPUs with SIMDs. Our approach partitions the target sparse matrix into two segmentations based on the regularities of the memory access pattern, where each segmentation is stored in a format suitable for its memory access patterns. Unlike prior hybrid storage schemes that rely on the user to determine the data partition among storage formats, we employ machine learning to build a predictive model to automatically determine the partition threshold on a per matrix basis. Our predictive model is first trained off line, and the trained model can be applied to any new, unseen sparse matrix. We apply our approach to 956 matrices and evaluate its performance on three distinct multi-core CPU platforms: a 72-core Intel Knights Landing (KNL) CPU, a 128-core AMD EPYC CPU, and a 64-core Phytium ARMv8 CPU. Experimental results show that our hybrid scheme, combined with the predictive model, outperforms the best-performing alternative by 2.9%, 17.5% and 16% on average on KNL, AMD, and Phytium, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. DIESEL: A novel deep learning-based tool for SpMV computations and solving sparse linear equation systems

2. A Code Selection Mechanism Using Deep Learning;Cui;Proceedings of the 2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC),2016

3. Performance evaluation of the sparse matrix-vector multiplication on modern architectures

4. Implementing sparse matrix-vector multiplication on throughput-oriented processors;Bell;Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis,2009

5. Efficient sparse matrix-vector multiplication on x86-based many-core processors;Liu;Proceedings of the 27th International ACM Conference on International Conference on Supercomputing,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficiently Running SpMV on Multi-core DSPs for Banded Matrix;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3