Abstract
Fruit plants produce various volatile compounds that emit distinct aroma characteristics and contribute to their flavor qualities. However, some of these substances, especially hydroxyl-group molecules, are in non-volatile glycosylated forms. This study aimed to determine free and glycosidically bound volatile compounds in three Okinawan pineapple cultivars (‘N67-10′, ‘Yugafu’, and ‘Yonekura’). The free volatile components of squashed pineapple juice were analyzed using solid-phase microextraction (SPME)–arrow-gas chromatography–flame ionization detection/mass spectrometry (GC-FID/MS). The glycosides were collected through solid-phase extraction, hydrolyzed by β-glucosidase, and the released volatile compounds were measured. The sugar moieties of the glycosides were confirmed using GC-MS, and their glycoside constituents were analyzed using liquid chromatography (LC)-MS. Okinawan pineapple varied in its content and composition of free volatile components, which were predominantly comprised of esters, followed by alcohols, terpenes, and ketones. Eight hydroxyl-group compounds, including chavicol, eugenol, geraniol, phenylethyl alcohol, benzyl alcohol, 2-ethyl-1-hexanol, 1-hexanol, and 3-methyl-2-butenol, were released from their glycosylated forms via enzymatic hydrolysis, wherein the amounts of most of them were greater in ‘Yonekura’ than in the other cultivars. Moreover, two glycosides, chavicol-O-β-D-glucopyranoside and eugenol-O-β-D-glucopyranoside, were identified in all the cultivars, wherein the aglycones of both glycosides could be potential odor sources of the medicinal-herbal aromas. These results provide important information regarding both volatile-aroma qualities and bounded-aroma resources in Okinawan pineapple for fresh consumption and agroindustrial processing.
Funder
The research program on development of innovative technology grants from the Project of the Bio-oriented Technology Research Advancement Institution
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献