Quality Prediction and Parameter Optimisation of Resistance Spot Welding Using Machine Learning

Author:

He Yicheng,Yang KaiORCID,Wang Xiaoqing,Huang HaisongORCID,Chen Jiadui

Abstract

In a small sample welding test space, and to achieve online prediction and self-optimisation of process parameters for the resistance welding joint quality of power lithium battery packs, this paper proposes a welding quality prediction model. The model combines a chaos game optimisation algorithm (CGO) with the multi-output least-squares support vector regression machine (MLSSVR), and a multi-objective process parameter optimisation method based on a particle swarm algorithm. First, the MLSSVR model was constructed, and a hyperparameter optimisation strategy based on CGO was designed. Next, the welding quality was predicted using the CGO–MLSSVR prediction model. Finally, the particle swarm algorithm (PSO) was used to obtain the optimal welding process parameters. The experimental results show that the CGO–MLSSVR prediction model can effectively predict the positive and negative electrode nugget diameters, and tensile shear loads, with root mean square errors of 0.024, 0.039, and 5.379, respectively, which is better than similar methods. The average relative error in weld quality for the optimal welding process parameters is within 4%, and the proposed method has a good application value in the resistance spot welding of power lithium battery packs.

Funder

Guizhou Provincial Science and Technology Projects

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3