Development and Comparison of Ten Differential-Evolution and Particle Swarm-Optimization Based Algorithms for Discount-Guaranteed Ridesharing Systems

Author:

Hsieh Fu-ShiungORCID

Abstract

Savings on transportation costs provide an important incentive for shared mobility models in smart cities. Therefore, the problem of maximizing cost savings has been extensively studied in the ridesharing literature. Most studies on ridesharing focus on the maximization of the overall savings on transportation costs. However, the maximization of the overall savings on transportation costs may satisfy users’ expectations for cost savings. For people to adopt ridesharing as a means to reduce costs, a minimal expected cost savings discount must be offered. There is obviously a gap between the existing studies and the real problems faced by service providers. This calls for the development of a study to formulate a ridesharing model that guarantees the satisfaction of a minimal expected cost savings discount. In this paper, we considered a discount-guaranteed ridesharing model that ensures the provision of a minimal expected cost savings discount to ridesharing participants to improve users’ satisfaction with the ridesharing service in terms of cost savings. The goal was to maximize the overall cost savings under certain capacity, spatial, and time constraints and the constraint that the discount offered to ridesharing participants could be no lower than the minimal expected cost savings discount. Due to the complexity of the optimization problem, we adopted two evolutionary computation approaches, differential evolution and particle swarm optimization, to develop ten algorithms for solving the problem. We illustrated the proposed method by an example. The results indicated that the proposed method could guarantee that the discount offered to ridesharing participants was greater than or equal to the minimal expected cost savings discount. We also conducted two series of experiments to assess the performance and efficiency of the different solution algorithms. We analyzed the results to provide suggestions for selecting the appropriate solution algorithm based on its performance and efficiency.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3