Characterizing the Flavor Precursors and Liberation Mechanisms of Various Dry-Aging Methods in Cull Beef Loins Using Metabolomics and Microbiome Approaches

Author:

Setyabrata DericoORCID,Vierck KellyORCID,Sheets Tessa R.ORCID,Legako Jerrad F.,Cooper Bruce R.ORCID,Johnson Timothy A.ORCID,Kim Yuan H. BradORCID

Abstract

The objective of this study was to characterize and compare the dry-aging flavor precursors and their liberation mechanisms in beef aged with different methods. Thirteen paired loins were collected at 5 days postmortem, divided into four sections, and randomly assigned into four aging methods (wet-aging (WA), conventional dry-aging (DA), dry-aging in a water-permeable bag (DWA), and UV-light dry-aging (UDA)). All sections were aged for 28 days at 2 °C, 65% RH, and a 0.8 m/s airflow before trimming and sample collection for chemical, metabolomics, and microbiome analyses. Higher concentrations of free amino acids and reducing sugars were observed in all dry-aging samples (p < 0.05). Similarly, metabolomics revealed greater short-chain peptides in the dry-aged beef (p < 0.05). The DWA samples had an increase in polyunsaturated free fatty acids (C18:2trans, C18:3n3, C20:2, and C20:5; p < 0.05) along with higher volatile compound concentrations compared to other aging methods (aldehyde, nonanal, octanal, octanol, and carbon disulfide; p < 0.05). Microbiome profiling identified a clear separation in beta diversity between dry and wet aging methods. The Pseudomonas spp. are the most prominent bacterial species in dry-aged meat, potentially contributing to the greater accumulation of flavor precursor concentrations in addition to the dehydration process during the dry-aging. Minor microbial species involvement, such as Bacillus spp., could potentially liberate unique and potent flavor precursors.

Funder

United States Department of Agriculture

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3