Abstract
Tomato is abundant in alkaloids, phenolic acids, and flavonoids; however, the effect of transcription factor NOR-like1 on these metabolites in tomato is unclear. We used a combination of widely targeted metabolomics and transcriptomics to analyze wild-type tomatoes and CR-NOR-like1 tomatoes. A total of 83 alkaloids, 85 phenolic acids, and 96 flavonoids were detected with significant changes. Combined with a KEGG enrichment analysis, we revealed 16 differentially expressed genes (DEGs) in alkaloid-related arginine and proline metabolism, 60 DEGs were identified in the phenolic acid-related phenylpropane biosynthesis, and 30 DEGs were identified in the flavonoid-related biosynthesis pathway. In addition, some highly correlated differential-expression genes with differential metabolites were further identified by correlation analysis. The present research provides a preliminary view of the effects of NOR-like1 transcription factor on alkaloid, phenolic acid, and flavonoid accumulation in tomatoes at different ripening stages based on widely targeted metabolomics and transcriptomics in plants, laying the foundation for extending fruit longevity and shelf life as well as cultivating stress-resistant plants.
Funder
National Natural Science Foundation of China
Subject
Molecular Biology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献